[Germany] This satellite image taken near the island of Heligoland in the German Bight, southern North Sea, shows bacteria (green) Continue reading The algae are sweet, but still they share
Tag Archives: Germany
Researchers turn algae into a material as hard as steel
[Germany] Algae in a pond may look flimsy. But scientists are using algae to develop industrial-strength material that’s as hard as steel but Continue reading Researchers turn algae into a material as hard as steel
Chemical cues prompt farmed seaweeds to protect themselves
[Germany] Scientists experimenting on farmed algae show they can deliberately trigger seaweeds’ chemical defenses. Continue reading Chemical cues prompt farmed seaweeds to protect themselves
The algae’s third eye
[Germany] Just like land plants, algae use sunlight as an energy source. Many green algae actively move in the water; they can Continue reading The algae’s third eye
How algae could sustainably reduce the carbon dioxide concentration in the atmosphere
[Germany] In collaboration with fellow researchers, chemists at the Technical University of Munich (TUM) have developed a process Continue reading How algae could sustainably reduce the carbon dioxide concentration in the atmosphere
Turbulence causes swimming algae to congregate in dense patches, say physicists
[UK, Germany] Mild turbulence on the millimetre scale causes swimming phytoplankton to form dense patches, according to researchers in Germany and the UK. The research could boost our understanding of the spatial distribution of phytoplankton in oceans and lakes and help predict – and possibly prevent — the occurrence of toxic algal blooms.
Phytoplankton are microscopic algae that live near the surface of oceans and lakes. Some phytoplankton are motile, which means that they can propel themselves forwards. Like plants, they derive energy from the Sun by photosynthesis and produce more than 50% of oxygen we breathe. The organisms also play a key role in regulating atmospheric carbon dioxide levels.
An algal bloom is created when environmental factors such as nutrient availability and water temperature are favourable for the rapid reproduction of algae. Blooms can be destructive to wildlife, fisheries and tourism by blocking sunlight and by the release of toxic compounds into the water by the algae.
Mixing effect
Blooms can stretch over hundreds of square kilometres of ocean. Tidal currents and winds will often create uneven spatial distributions of algae, resulting in kilometre-sized patches. At length scales shorter than a centimetre, the mixing effect of fluid turbulence was expected to result in a uniform density of microorganisms. However, recent observations surprised scientists by showing that algal blooms have patchy distributions even at the millimetre scale. This patchiness could affect how fast a bloom develops because phytoplankton can reproduce sexually and therefore reproduction rates could be higher in regions of high density.
“The fact that there is a patchy distribution of phytoplankton on a kilometre scale can be easily understood and explained by oceanic currents and strong winds. Nevertheless, at the small scale, hydrodynamics should make things very homogeneous. And yet it doesn’t,” explains Marco Mazza, of Loughborough University.
Mazza and colleagues at Loughborough and the Max Planck Institute for Dynamics and Self-Organization in Göttingen used computer simulations and calculations to explore the origins of this unexpected millimetre-scale patchiness. They have shown that that an interplay between phytoplankton motility and interactions between individual organisms could play a role in creating patchiness on short length scales.
Navier–Stokes equations
The team looked at how motile phytoplankton are affected by hydrodynamic flows. To assess the phytoplankton behaviour on a sub-centimetre scale, the researchers combined 3D particle dynamics simulations with Navier–Stokes equations. The latter are the governing equations of fluid flows and define the relationship between the pressure, temperature, density, and velocity.
“We are solving the full Navier–Stokes equations without any further approximations and coupling this to a particle model describing the position of the particle within the flow, speed and direction of its swimming, it’s orientation, and thermal and biological noise,” Mazza explains, adding “Moreover, we consider the particle-particle interactions”.
Researchers found that the coupling of interactions between individuals to the small-scale flow features strongly favours the creation of dense patches of the organisms.
Prediction tool
These patches have implications to ecology and even human health, as algae will be more likely to mate in dense areas, leading to even faster growth. This research could ultimately contribute to creation of a tool for predicting algal blooms, which would be very useful to those involved in fishing and tourism.
Raymond Goldstein of the University of Cambridge, who was not involved in the work, told Physics World “the general issue is extremely interesting, but I don’t think the researchers have yet explained exactly the mechanism by which the clustering occurs. I do not see a clear physical picture of what exactly the interactions and alignments of cell are that lead to cluster formation. Having said that, this [research] will certainly motivate further investigations, precisely because it raises a nice set of questions and a way to analyse them.”
Photo: Turbulent times: turbulence could cause motile phytoplankton to come together. (Courtesy: Michael Wilczek, Marco Mazza and colleagues)
View original article at: Turbulence causes swimming algae to congregate in dense patches, say physicists
Contact Algae World News for algae industry advertising and other opinions: [email protected]
Harnessing algae with magnets to deliver drugs inside our bodies
[Germany] Algae aren’t just scum on the top of a lake: some of the microbes can1 swim surprisingly fast – outpacing even the Continue reading Harnessing algae with magnets to deliver drugs inside our bodies
Biotech company built a 230 kilometers vertical photobioreactor in just 10 months
[Austria] Ecoduna, a biotech start-up in Austria, constructed one of the largest vertical photobioreactor in Europe for the production of microalgae. Continue reading Biotech company built a 230 kilometers vertical photobioreactor in just 10 months
Solaga’s living facades, crowdfunding on Startnext
[Germany] SOLAGA is a young German biotechnology startup, working on extraordinary biological structures; microalgal biofilms. Continue reading Solaga’s living facades, crowdfunding on Startnext
Overcoming limitations of engineering eukaryotic algae
[Germany] Have some of the final engineering limitations of microalgae been overcome? Can microalgae be hosts for genetic Continue reading Overcoming limitations of engineering eukaryotic algae